Events
Past Event
CIERA Spring Interdisciplinary Colloquium: How to Find a Transiting Exoplanet: Data-driven Discovery in the Astronomical Time Domain
CIERA - Center for Interdisciplinary Exploration and Research in Astrophysics
4:00 PM
//
F160 Technological Institute
Details

Free and open to the public. No registration or ticket required. Campus parking lots are unrestricted after 4:00 pm.
CIERA Spring Interdisciplinary Colloquium:
How to Find a Transiting Exoplanet: Data-driven Discovery in the Astronomical Time Domain
Co-hosted by Northwestern Institute on Complex Systems (NICO) & the Data Science Initiative (DSI).
Dan Foreman-Mackey
University of Washington, Sagan Postdoctoral Fellow
Talk Abstract: Thousands of exoplanets have been discovered over the past few years. These discoveries were enabled by large and homogeneous space-based time domain surveys of nearby stars, including NASA's Kepler Mission. To push the exoplanet detection threshold to the smallest planets or the longest orbital periods using these data, we combine physical models of exoplanets with data-driven models of the stars and the spacecraft. Scaling these models to be applied to hundreds of thousands of stars with tens of thousands of measurements each poses an interesting technical challenge that we have solved in close interdisciplinary collaboration. In this talk, I will describe the current and future datasets, and the basic problem of exoplanet detection. I will go on to outline the technical challenges and present some of our solutions. Finally, I will discuss how we understand the place of our Solar System in the greater context of the population of planets using these discoveries.
Time
Tuesday, May 16, 2017 at 4:00 PM - 5:00 PM
Location
F160 Technological Institute Map
Contact
Calendar
CIERA - Center for Interdisciplinary Exploration and Research in Astrophysics
WED@NICO SEMINAR: Michael Dickey, NC State University "Shaping a Soft Future"
Northwestern Institute on Complex Systems (NICO)
12:00 PM
//
Lower Level, Chambers Hall
Details

Speaker:
Michael Dickey, Camille & Henry Professor, Department of Chemical and Biomolecular Engineering, NC State University
Title:
Shaping a Soft Future
Abstract:
Existing devices—such as cell phones, computers, and robots – are made from rigid materials, which is in direct contrast to the soft materials that compose the human body. In this talk, I will discuss several topics related to studying and harnessing soft materials within the context of creating devices (actuators, sensors, electronics) with tissue like properties.
· Liquid metal: Gallium-based liquid metals are often overlooked despite their remarkable properties: melting points below room temperature, water-like viscosity, low-toxicity, and effectively zero vapor pressure (they do not evaporate). Normally small volumes of liquids with large tension form spherical or hemi-spherical structures to minimize surface energy. Yet, these liquid metals can be patterned into non-spherical shapes (cones, wires, antennas) due to a thin, oxide skin that forms rapidly on its surface. Recently, we have discovered a simple way to separate the oxide from the metal as a way to deposit 2D-like oxides at ambient conditions.
· Shape reconfiguration: Perhaps the most fascinating aspect of liquid metals it the ability to use interfacial electrochemistry chemistry to remove / deposit the oxide to manipulate the surface tension of the metal over unprecedented ranges (from the largest tension of any known liquid to near zero!). This allows manipulating the shape and position of the metal for shape reconfigurable devices.
· Ionogels: Soft materials that are tough (that is, they do not readily tear or fail mechanically) are important for a number of applications, including encapsulation of devices. Recently, we discovered a simple way to create ulta-tough ionogels, which are polymer networks swollen with ionic liquids. These materials are tougher than cartilage and compatible with 3D printing.
This work has implications for soft and stretchable electronics; that is, devices with desirable mechanical properties for human-machine interfacing, soft robotics, and wearable electronics.
Speaker Bio:
Michael Dickey received a BS in Chemical Engineering from Georgia Institute of Technology (1999) and a PhD from the University of Texas (2006) under the guidance of Professor Grant Willson. From 2006-2008 he was a post-doctoral fellow in the lab of Professor George Whitesides at Harvard University. He is currently the Camille and Henry Dreyfus Professor in the Department of Chemical & Biomolecular Engineering at NC State University. He completed a sabbatical at Microsoft in 2016 and EPFL in 2023. Michael’s research interests include soft matter (liquid metals, gels, polymers) for soft and stretchable devices (electronics, energy harvesters, textiles, and soft robotics).
Location:
In person: Chambers Hall, 600 Foster Street, Lower Level
Remote option: https://northwestern.zoom.us/j/96920996561
Passcode: NICO25
About the Speaker Series:
Wednesdays@NICO is a vibrant weekly seminar series focusing broadly on the topics of complex systems, data science and network science. It brings together attendees ranging from graduate students to senior faculty who span all of the schools across Northwestern, from applied math to sociology to biology and every discipline in-between. Please visit: https://bit.ly/WedatNICO for information on future speakers.
Time
Wednesday, March 12, 2025 at 12:00 PM - 1:00 PM
Location
Lower Level, Chambers Hall Map
Contact
Calendar
Northwestern Institute on Complex Systems (NICO)
Winter Classes End
University Academic Calendar
All Day
Details
Winter Classes End
Time
Saturday, March 15, 2025
Contact
Calendar
University Academic Calendar
Spring Classes Begin - Northwestern Monday: Classes scheduled to meet on Mondays meet on this day.
University Academic Calendar
All Day
Details
Spring Classes Begin - Northwestern Monday: Classes scheduled to meet on Mondays meet on this day.
Time
Tuesday, April 1, 2025
Contact
Calendar
University Academic Calendar