Events
Past Event
Wednesdays@NICO Seminar: Peter Dodds, University of Vermont
Northwestern Institute on Complex Systems (NICO)
12:00 PM
//
Lower Level Chambers Hall
Details
Wednesdays@NICO Seminar | 12:00-1:00 PM, September 30, 2015 | Chambers Hall, Lower Level
Peter Sheridan Dodds, Director, Complex Systems Center & Professor, Mathematics & Statistics, University of Vermont
Measuring the Happiness, Health, and Stories of Populations
Abstract
In this talk, I will discuss our work on building what we call "lexical meters"---online instruments that use social media and other texts to quantify population rates of a wide array of human behaviour such as wealth, exercise levels, obesity rates, and sleep insufficiency. I will first showcase our hedonometer, an instrument for measuring positivity in written expression. I'll show how we have consistently improved our methods to allow us to explore collective, dynamical patterns of happiness found in massive text corpora including Twitter, song lyrics, works of literature, movies, political speeches, and news sources. I will present evidence for how 10 diverse natural languages appear to contain a striking frequency-independent positive bias, describing how this phenomenon plays a key role in our instrument's performance, and how it may more deeply reflects human nature. I will then discuss our work on building the Panometer, introducing our latest instrument: the Lexicocalorimeter, a principled meter that turns phrases into calories. Finally, I will point to a number other diverse projects being carried by our team in the Computational Story Lab, ranging from the stories of sports to the dynamics of climate change.
Bio
Peter Sheridan Dodds is a Professor at the University of Vermont (UVM) working on system-level problems in many fields, ranging from sociology to physics. He is Director of the UVM's Complex Systems Center, co-Director of UVM's Computational Story Lab, and a visiting faculty fellow at the Vermont Advanced Computing Core. He maintains general research and teaching interests in complex systems and networks with a current focus on sociotechnical and psychological phenomena including collective emotional states, contagion, language, and stories. His methods encompass large-scale sociotechnical experiments, large-scale data collection and analysis, and the formulation, analysis, and simulation of theoretical models. Dodds's training is in theoretical physics, mathematics, and electrical engineering with extensive formal postdoctoral and research experience in the social sciences. Dodds has received funding from NSF, NASA, ONR, and the MITRE Corporation, among others, notably being awarded an NSF CAREER by the Social and Economic Sciences Directorate.
Email nico@northwestern.edu if you would like to meet with Professor Dodds.
Time
Wednesday, September 30, 2015 at 12:00 PM - 1:00 PM
Location
Lower Level Chambers Hall Map
Contact
Calendar
Northwestern Institute on Complex Systems (NICO)
Data Science Nights - November 2024 w/ Stefan Pate, Interdisciplinary Biological Sciences Program
Northwestern Institute on Complex Systems (NICO)
5:15 PM
//
Lower Level, Chambers Hall
Details
NOVEMBER MEETING: Tuesday, November 26, 2024 at 5:20pm (US Central)
LOCATION:
In person: Chambers Hall, Lower Level
600 Foster Steet, Evanston Campus
AGENDA:
5:20pm - Meet and Greet
5:30pm - Talk by Stefan Pate, Interdisciplinary Biological Sciences Program
6:15pm - Q&A
SPEAKER:
Stefan Pate, PhD student, Interdisciplinary Biological Sciences Program, Northwestern University
ABSTRACT:
Tapping Underground Enzymatic Functions to Understand and Direct Metabolic Evolution
Characterizing “underground” functions of enzymes will aid our understanding of basic physiology & evolutionary biology, and will expand our bioengineering capabilities. Underground catalytic functions (1) make metabolic networks robust to loss-of-function mutations that compromise major fluxes, (2) figure prominently into hypotheses on the evolution of metabolic diversity, and (3) permit bioengineers to access novel chemistries with a tractable amount of modification to extant amino acid sequences. I'll share work on a machine learning model that predicts unobserved catalytic functions of enzymes, and a method designed to efficiently generate multi-enzyme synthesis networks inclusive of predicted catalytic functions.
DATA SCIENCE NIGHTS are monthly talks on data science techniques or applications, organized by Northwestern University graduate students and scholars. Aspiring, beginning, and advanced data scientists are welcome! For more information: http://bit.ly/nico-dsn
Time
Tuesday, November 26, 2024 at 5:15 PM - 7:00 PM
Location
Lower Level, Chambers Hall Map
Contact
Calendar
Northwestern Institute on Complex Systems (NICO)
NICO DECEMBER SEMINAR: Scott Feld, Purdue University "Finding Highly Connected Nodes in Networks: The Power of Common Friends"
Northwestern Institute on Complex Systems (NICO)
11:00 AM
//
Lower Level, Chambers Hall
Details
Speaker:
Scott Feld, Professor of Sociology, Purdue University
Title:
Finding Highly Connected Nodes in Networks: The Power of Common Friends
Abstract:
This paper extends the Friendship Paradox – where friends have more friends than random people do, on average – to the more general phenomenon that mutual friends have more friends than friends do, on average. We show that we can find people who who are friends of multiple people in practical sized random samples in one regional Facebook network of 63,392 people with an average of 24 friends each, where people with two friends in a random sample have an average of 212 friends overall, with three friends have an average of 391 friends, etc. We further illustrate this general network phenomenon by taking random samples of citations from 79,034 journal articles. We find that a source cited by two articles in a random sample has an average of 461 citations, placing it in the top 0.01% in numbers of citations among all sources cited by these articles. We provide a general expression for the expected overall number of friends of a person found to have k friends in a random sample from a population with a given distribution of numbers of friends. We show that the effectiveness of using common friends among random samples for finding highly connected nodes is most pronounced when there are nodes with a great disproportion of the ties, as seems to be both typical and important for many types of social and other networks, such as where there are superspreaders of diseases, mega-influencers on the Internet, and highly connected central nodes in centralized neural networks. We discuss further implications, applications, and directions for further research.
Speaker Bio:
Scott Feld served as Assistant to Full Professor of Sociology at the State University of New York at Stony Brook from 1975-1991. He then served as Professor of Sociology at Louisiana State University from 1991 until 2004, and joined the faculty at Purdue University in 2004. He has published over sixty articles, including twelve published in the most prestigious journals in the fields of Sociology and Political Science. His ongoing research interests involve 1) causes and consequences of patterns in social networks, 2) processes of individual and collective decision making, and 3) applications of sociology, most recently including innovations in marriage and divorce laws (covenant marriage). He regularly teaches undergraduate and graduate courses on social networks, research methods, and statistics.
Time
Tuesday, December 3, 2024 at 11:00 AM - 12:00 PM
Location
Lower Level, Chambers Hall Map
Contact
Calendar
Northwestern Institute on Complex Systems (NICO)